
SHEP Automatic learning AI
V 0.0.9

;8: 8;X%;;%X88 .8:

 @t 8 . 8X 88.

 . . .8 8 8 X .

 . . . @8 @ . . .

 . . ;t8 S8; . .

 . . S t; . .

 . . 8: 8t .

 . ; :S. .

 . .8 8S .

 8. . ;. .

 . X. 88X88 8S

 ; 88: X88;X88888X;t8t ;; .

 X. X.. %t:X 8%

 .8 : ;. . ;X8: :

 . X . 8 88. 8

:8 . :. :X S

% St . :S;. tS . .

8 . .:8t. .;8;S.. :8 . . .

% % :8. @:. X. 8

% . S: ..;... t@ . . :

: S. .. % . . :

. . t. t . . .

t . 8. .8 . 8

% . ;8 8t . . . 8

X . % : . . .8

 . . t8 8; . 8

X: . ;;. .%;8;

 ;. . . .%

 8. . . .@8. .8@. . . .8:

 8: @ 8; :8 @. ;:

 .X 8t. .t8 X . ;8 .

 .%8 . . .;X88888X;. . . :@:

 ;t. .

 :: ;X

 . :; %8 . .

 . ; ;t

 . ::8:. :8; . .

 :%S; .

 . . X8 . . . :t S . .

 . %.: :88 . .

 . . S 8:;8 @:. . .

 . . . @; 88.;;:. ..:;;88S 88 .

By Dexter RC Shepherd, Undergraduate at the University of Sussex

Contents
Overview ... 3

Technicalities... 3

System Requirements ... 3

Test plan .. 3

AI code .. 3

Main SHEP ... 4

User interface.. 4

Development... 4

AI code .. 4

Personality file .. 4

Data management .. 4

Negative feedback .. 7

Topic break up ... 7

Main SHEP ... 7

User interface.. 7

Testing ... 9

AI code .. 9

Main SHEP ... 10

User interface.. 10

Deployment of the system .. 10

Libraries needed ... 10

Environment ... 11

Future versions ... 11

Legal .. 11

References .. 11

Overview
Basing off of the last project, the University chatbot [1], I will like to explore the concept of self-

learning chat bots. Self-learning chat bots remove the need for an admin making the bot more

adaptable to situations.

There are different ways this admin can be replaced, through a controlled method where you would

have a datafile of information it can take information from. Alternatively you could allow it to learn

off the user, or have something in between. Learning off the user is a quicker method of learning but

raises dangers that the AI may take a different path to its set up task [2]. I would like to make an AI

which will use a bit of both, its datafile will contain information about itself and information on the

project. This is where it will learn it’s personality. Everything else will be learned off of user

interaction using classical conditioning [3] approaches.

Technicalities

System Requirements
The program will be using the old system method of storing the graph in the dictionary. This means

the more responses the more replies. I could consider making a file structure dictionary system, to

take the pressure off the RAM. This code should run on any normal computer. I hope to put it onto

a Raspberry Pi.

The Raspberry Pi offers the ability to embed code on computers to run like a micro-controller. I

would then be able to implement a microphone and the Google text to speech library to validate

text input for the system.

The user interface will use an LED matrix eye. I will use an i2c microphone with the Raspberry Pi and

some other sensors for later versions.

Test plan

AI code
Test No Test Expected outcome
1 Creates a log of the

conversations
In the folder, there will be
each log with unique filenames

2 Finds the right database logs
to point to

A phrase which points to some
set data logs will check these
two files. A print statement
will be used to show it is
searching each datafile.

3 The code finds relevant
responses to the input.

The system will answer the
question “how are you” with
the phrase which is set in one
of its databases.

4 The code finds the most
relevant output out of a series
of outputs saved.

The code will check different
files and find which file is the
most related

5 The code is adding new
information and ways to
respond to this information all
the time.

When a question is unknown,
the AI will ask it back to the
user in the most natural way
possible.

6

Main SHEP
Test No Test Expected outcome
1 Functions I expected way in

previous version
Yes

User interface
Test No Test Expected outcome
1 Displays an eye The SHEP eye is shown

constantly
2 The eye blinks every so often Ever few seconds the eye

blinks
3 The AI shows it is listening The eye shows a green dot

when it is listening for audio
and turns off when it is not.

4 Does the AI take in your voice and convert to text Yes

Development

AI code

Personality file
The personality file will be used and checked in the beginning. If an answer is not found then it will

continue with the normal process. If it is found then that will be returned as the output no ifs or

buts. This file will contain data such as “my name is SHEP” and other information about the

software, the project, the creator and so on.

This will be a simple text file called “personality.txt”.

Data management
This section is about the way in which different bits of information is stored and how it impacts the

greater system. Also solutions to keep the system fast and sustainable, meaning it will not overspill

the RAM or memory. To make a lifelong AI it will need to make sure databases aren’t just logging for

the sake of it if the data doesn’t add anything to the system. Also current variables should not be

taking up all the RAM.

The data will be using a couple of graphs to organize what the meaning of a sentence is, and which

database logs of conversation each term points to. Each database will then be converted into an

array of sentences which flow into each other. It will also be converted to an array of broken up

language. This is so the general feel of the conversation can be matched with the current

conversation. This will give greater accuracy when finding a response.

Above shows the process of this learning. Where each conversation is carried through and additions

made in a datafile log of conversations and called upon when phrases point to this database. There

will be potential memory issues with the code as more and more responses get added, but I’ve got a

few ideas in place to fix these. This will be something I get to later down the line.

My next task is to make to code find the most relevant conversation to take the data from. I did this

by splitting the last 100 or less words in a conversation and the current conversation down into

elements of the language. Then it calculates the sum of each phrase similarity, and converts it to a

percentage.

𝑃 =
∑ 𝑆

𝑤
, 𝑤 ≤ 100

Where w is the amount of words in the log, an S is the probabilities of similarity of words with the

current conversation.

Below shows the output files and the probability of it being the right file to find an answer. It bases it

off of how similar the conversations are.

I was happy with this so far, but found that there would be a potential problem that it always has the

same answer for everything. It can only learn new responses if the bot asks you something and you

respond differently, then this file is picked based on it’s conversational similarity. I will need to get

the bot to experiment with it’s own language more often. When stuck for a response, perhaps take

responses out of the confused file.

When the conversations are not exactly found in the files, and the response is going to be a response

but not related (ie a low probability) instead of returning it and reinforcing it’s own mistakes, it could

perhaps set this conversation as confused, and try and lead with the users questions in another

conversation. It would then delete this conversation from being used as its trained data.

I added in a method which would stop saving to the conversation log and stop directing data there.

This is so it will not keep training its mistakes. It will still attempt to respond using it’s potentially

incorrect data, but will now have a log file of confused data to try out.

After thinking a lot, learning paths of conversations is very difficult as it is open to many changes. I

could potentially keep log files in the confused folder get picked based on similarity to the current

conversation. If similar, then it will use the last outputted phrase and set this file as the current log.

The response the user gives will then be the response. I could apply classical conditioning to get the

most frequent reply but for now will just do it this way.

When implementing this, suddenly the code started writing loads of blank files for no reason. This

delayed my ability to develop this. Once I solved this issue (I think it was where old files were

deleted), I worked back on the “find how to respond and learn” function.

After adding this in, the system was appearing more natural in the way it learns. It was making

mistakes, but I think it will be less of a problem once it has learned more conversations.

The responses were starting to be the same one every time. I would like this not to be the case to

appear less robotic.

Here we have an array of potential outputs linked with each interaction. It will pick a response at

random. The AI is in it’s “dumb” stage. I will get lots of conversational data and train it. I will also

experiment with it by implementing a different graph data structure. This will take pressure off the

ram and save the data within a file system.

The ram was secured, but the system slowed down considerably. This might be because the new

graph data structure is reading every single file.

This was an issue, but could be solved by having a page indexer as some sort of database to find the

wanted item.

After doing this it improved the feel of the system. I will limit the amount of times the same

response can appear so it doesn’t become OP in the response results.

After tweaking bits of the code I found it to be flowing a it more naturally. The program would

occasionally respond randomly, but that is because it still has much to learn, and it is learning all the

time.

Negative feedback
If the system gets something wrong, how will it correct itself? The negative feedback is already

written into the SHEP code, but the AI will need a way to trigger it. Perhaps phrases, or even volume

of microphone if using voice recognition. I will leave this to the user by using a method to do all this.

What this negative feedback method will need to do is remove the answer to the question, and then

add it to the confused file. When it outputs a statement rather than a question, it could on occasion

Follow this up by outputting the confused file data and trying to find a response.

Topic break up
After researching Cleverbot [4] I discovered that breaking has been done in more efficient ways in

the past than the first plan I made to do this. Instead of building up topics and searching each

response, why not gather all the possible responses to questions it has learned. “How are you” → “I

am good”, “I am sad”, “I am okay” and check which time it was used shares the most in common

with the current. This would mean storing information about each time data is used.

Every conversation log with the user will be kept and used to find responses. This will then be taken

further to find which text file matches the user input the most.

When I added the return a random choice from all the potential outputs, I increased the probability

on the return of an exact match with the conversation. This was to prevent “hi” always being “hello”.

Instead what I need to do is gather all the top responses as well as the second to top responses.

Then return a random choice form this as well.

Main SHEP
Main SHEP will remain mostly the same, with some changes. These changes will be to split up

processes to be used to search the data. I will use SHEP and the NLP to break down information and

get it linking to a key within the AI program.

There will be no need to use the admin or client side, as An item either exists or it does not and I will

not be using the tools to interact with the chatbot interface, more just using it to provide a better

searching method for the AI I am making.

The alterations to the main SHEP code must not break the SHEP code in other processes, for

example the uni-bot. It should be a library tool for machine learning. By splitting up the functions,

this should be possible.

User interface
The user interface is very much hardware based, with the LED matrix eye and a microphone. This will

need to be presented in a nice way. Using the old Hypercube design from V 0.0.1, I 3D printed a cube

to hold the Raspberry Pi Zero, attached to the UNICORN HAT. Between was a PCB HAT which had a

microphone soldered to it, and a battery pack. All of this screws onto the lid of the hypercube so

that it can easily fit into the cube.

The eye blinks every few seconds to give a more active feel.

The hardware has a microphone wired in so that it can use speech recognition. I will use the Google

speech to text API. I will need to also install a speaker method in the robot and some sort of speech

to text library (which should be achievable as I have done it before).

I will need to incorporate some sort of reset if inactive method, so the responses do not get

confused. Perhaps after about a minute of inactivity the conversation will reset. This is something I

can set up in the user interface side.

For audio output I used the espeak library. I also used the Python speech recognition library and

google recognizer. I will need to research into use of these software’s in a legal sense.

I have used both of them before so got my old code for it, but it was not working.

I installed all the libraries and had a bit of trouble compiling the microphone, but got there I the end.

Testing

AI code
Test No Test Outcome
1 Creates a log of the

conversations

The files are uniquely named by using the date
and time.
Each file contains the conversation that I had
with the bot.

2 Finds the right database
logs to point to

3 The code finds relevant
responses to the input.

The responses are based off previous responses.
It finds the most likely response.

4 The code finds the most
relevant output out of a
series of outputs saved.

Each datafile name is outputted in this window,
with the probability of this folder combined with
the phrase being correct. As you can see, the file
changes based on how relevant the conversation
is to the log.

5 The code is adding new
information and ways
to respond to this
information all the
time.

The information is added and remembered. Of
course, I will make the learning system more
complicated.

Above shows a later snippet of development
where it will ask you the question more
naturally.

6

Main SHEP
Test No Test Outcome
1 Functions I expected way in

previous version
Yes

User interface
Test No Test Outcome
1 Displays an eye Yes
2 The eye blinks every so often Yes
3 The AI shows it is listening Yes, with a green LED
4 Does the AI take in your voice

and convert to text
Yes

Deployment of the system

Libraries needed
SHEP library 2020, and all the sub libraries:

• Nltk

• Json

• Sys

• Itertools

• Re

• Difflib

• threading

Datetime to uniquely name files. As many of these libraries are inbuilt to Python they are free to use

and distribute.

Environment

Future versions
This system is very much based on imitating conversation and not taking it further. Our ability to

communicate is arguably like this in a fundamental level, but what we can do is form new

information from past experiences. This is a concept I would like to research and implement in the

next version so that the system actually grasps information and uses it to its best ability.

Another thing I would like to add is the ability to find where questions lead to the same responses.

This can then work out what words and structures mean the same thing. This learning of language

will potentially help find information in the future.

Legal
Appending the SHEP2020 License written for the chat bot service, I will be making changes as some

of the libraries are not used.

Something which was not a library was espeak, which I used for voice recognition,

I used the Google speech to text library.

 GNU General Public License v3 (GPLv3) - For the audio output

BSD License (BSD) - The speech recognition library cannot be used in products without written

permission from the author.

References

[1] University chat bot project proposal, 2020

[2] Microsoft AI Nazi, https://en.wikipedia.org/wiki/Tay_(bot) (20/06/2020)

[3] Classical conditioning, https://en.wikipedia.org/wiki/Classical_conditioning (14/07/2020)

[4] Cleverbot, https://www.cleverbot.com/

https://en.wikipedia.org/wiki/Tay_(bot)
https://en.wikipedia.org/wiki/Classical_conditioning
https://www.cleverbot.com/

